Tight (Lower) Bounds for the Fixed Budget Best Arm Identification Bandit Problem

29 May 2016  ·  Alexandra Carpentier, Andrea Locatelli ·

We consider the problem of \textit{best arm identification} with a \textit{fixed budget $T$}, in the $K$-armed stochastic bandit setting, with arms distribution defined on $[0,1]$. We prove that any bandit strategy, for at least one bandit problem characterized by a complexity $H$, will misidentify the best arm with probability lower bounded by $$\exp\Big(-\frac{T}{\log(K)H}\Big),$$ where $H$ is the sum for all sub-optimal arms of the inverse of the squared gaps. Our result disproves formally the general belief - coming from results in the fixed confidence setting - that there must exist an algorithm for this problem whose probability of error is upper bounded by $\exp(-T/H)$. This also proves that some existing strategies based on the Successive Rejection of the arms are optimal - closing therefore the current gap between upper and lower bounds for the fixed budget best arm identification problem.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here