Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies

State-of-the-art efficient model-based Reinforcement Learning (RL) algorithms typically act by iteratively solving empirical models, i.e., by performing \emph{full-planning} on Markov Decision Processes (MDPs) built by the gathered experience. In this paper, we focus on model-based RL in the finite-state finite-horizon MDP setting and establish that exploring with \emph{greedy policies} -- act by \emph{1-step planning} -- can achieve tight minimax performance in terms of regret, $\tilde{\mathcal{O}}(\sqrt{HSAT})$. Thus, full-planning in model-based RL can be avoided altogether without any performance degradation, and, by doing so, the computational complexity decreases by a factor of $S$. The results are based on a novel analysis of real-time dynamic programming, then extended to model-based RL. Specifically, we generalize existing algorithms that perform full-planning to such that act by 1-step planning. For these generalizations, we prove regret bounds with the same rate as their full-planning counterparts.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here