Time-Sequence Channel Inference for Beam Alignment in Vehicular Networks

4 Dec 2018  ·  Sheng Chen, Zhiyuan Jiang, Sheng Zhou, Zhisheng Niu ·

In this paper, we propose a learning-based low-overhead beam alignment method for vehicle-to-infrastructure communication in vehicular networks. The main idea is to remotely infer the optimal beam directions at a target base station in future time slots, based on the CSI of a source base station in previous time slots. The proposed scheme can reduce channel acquisition and beam training overhead by replacing pilot-aided beam training with online inference from a sequence-to-sequence neural network. Simulation results based on ray-tracing channel data show that our proposed scheme achieves a $8.86\%$ improvement over location-based beamforming schemes with a positioning error of $1$m, and is within a $4.93\%$ performance loss compared with the genie-aided optimal beamformer.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here