Tiny Video Networks

15 Oct 2019  ·  AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo ·

Video understanding is a challenging problem with great impact on the abilities of autonomous agents working in the real-world. Yet, solutions so far have been computationally intensive, with the fastest algorithms running for more than half a second per video snippet on powerful GPUs... We propose a novel idea on video architecture learning - Tiny Video Networks - which automatically designs highly efficient models for video understanding. The tiny video models run with competitive performance for as low as 37 milliseconds per video on a CPU and 10 milliseconds on a standard GPU. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here