TLFW: A Three-layer Framework in Wireless Rechargeable Sensor Network with a Mobile Base Station

21 Feb 2020  ·  Wang Anwen, Meng Xianjia, Wang Lvju, Ji Xiang, Chen Hao, Liu Baoying, Chen Feng, Du Yajuan, Yin Guangcheng ·

Wireless sensor networks as the base support for the Internet of things has been a large number of popularity and application. Such as intelligent agriculture, we have to use the sensor network to obtain the growth environmental data of crops, etc.. However, the difficulty of power supply of wireless nodes has seriously hindered the application and development of Internet of things. In order to solve this problem, people use low-power, sleep scheduling and other energy-saving methods on the nodes. Although these methods can prolong the working time of nodes, they will eventually become invalid because of the exhaustion of energy. The use of solar energy, wind energy, and wireless signals in the environment to obtain energy is another way to solve the energy problem of nodes. However, these methods are affected by weather, environment and other factors, and are unstable. Thus, the discontinuity work of the node is caused. In recent years, the development of wireless power transfer (WPT) has brought another solution to this problem. In this paper, a three-layer framework is proposed for mobile station data collection in rechargeable wireless sensor networks to keep the node running forever, named TLFW which includes the sensor layer, cluster head layer, and mobile station layer. And the framework can minimize the total energy consumption of the system. The simulation results show that the scheme can reduce the energy consumption of the entire system, compared with a Mobile Station in a Rechargeable Sensor Network(MSiRSN).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here