TNE: A Latent Model for Representation Learning on Networks

16 Oct 2018Abdulkadir ÇelikkanatFragkiskos D. Malliaros

Network representation learning (NRL) methods aim to map each vertex into a low dimensional space by preserving the local and global structure of a given network, and in recent years they have received a significant attention thanks to their success in several challenging problems. Although various approaches have been proposed to compute node embeddings, many successful methods benefit from random walks in order to transform a given network into a collection of sequences of nodes and then they target to learn the representation of nodes by predicting the context of each vertex within the sequence... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet