Topic-Centric Unsupervised Multi-Document Summarization of Scientific and News Articles

Recent advances in natural language processing have enabled automation of a wide range of tasks, including machine translation, named entity recognition, and sentiment analysis. Automated summarization of documents, or groups of documents, however, has remained elusive, with many efforts limited to extraction of keywords, key phrases, or key sentences. Accurate abstractive summarization has yet to be achieved due to the inherent difficulty of the problem, and limited availability of training data. In this paper, we propose a topic-centric unsupervised multi-document summarization framework to generate extractive and abstractive summaries for groups of scientific articles across 20 Fields of Study (FoS) in Microsoft Academic Graph (MAG) and news articles from DUC-2004 Task 2. The proposed algorithm generates an abstractive summary by developing salient language unit selection and text generation techniques. Our approach matches the state-of-the-art when evaluated on automated extractive evaluation metrics and performs better for abstractive summarization on five human evaluation metrics (entailment, coherence, conciseness, readability, and grammar). We achieve a kappa score of 0.68 between two co-author linguists who evaluated our results. We plan to publicly share MAG-20, a human-validated gold standard dataset of topic-clustered research articles and their summaries to promote research in abstractive summarization.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here