TopicBERT: A Transformer transfer learning based memory-graph approach for multimodal streaming social media topic detection

Real time nature of social networks with bursty short messages and their respective large data scale spread among vast variety of topics are research interest of many researchers. These properties of social networks which are known as 5'Vs of big data has led to many unique and enlightenment algorithms and techniques applied to large social networking datasets and data streams. Many of these researches are based on detection and tracking of hot topics and trending social media events that help revealing many unanswered questions. These algorithms and in some cases software products mostly rely on the nature of the language itself. Although, other techniques such as unsupervised data mining methods are language independent but many requirements for a comprehensive solution are not met. Many research issues such as noisy sentences that adverse grammar and new online user invented words are challenging maintenance of a good social network topic detection and tracking methodology; The semantic relationship between words and in most cases, synonyms are also ignored by many of these researches. In this research, we use Transformers combined with an incremental community detection algorithm. Transformer in one hand, provides the semantic relation between words in different contexts. On the other hand, the proposed graph mining technique enhances the resulting topics with aid of simple structural rules. Named entity recognition from multimodal data, image and text, labels the named entities with entity type and the extracted topics are tuned using them. All operations of proposed system has been applied with big social data perspective under NoSQL technologies. In order to present a working and systematic solution, we combined MongoDB with Neo4j as two major database systems of our work. The proposed system shows higher precision and recall compared to other methods in three different datasets.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.