Topographic Deep Artificial Neural Networks (TDANNs) predict face selectivity topography in primate inferior temporal (IT) cortex

21 Sep 2019  ·  Lee Hyodong, DiCarlo James J. ·

Deep convolutional neural networks are biologically driven models that resemble the hierarchical structure of primate visual cortex and are the current best predictors of the neural responses measured along the ventral stream. However, the networks lack topographic properties that are present in the visual cortex, such as orientation maps in primary visual cortex and category-selective maps in inferior temporal (IT) cortex... In this work, the minimum wiring cost constraint was approximated as an additional learning rule in order to generate topographic maps of the networks. We found that our topographic deep artificial neural networks (ANNs) can reproduce the category selectivity maps of the primate IT cortex. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here