Toward Automated Quest Generation in Text-Adventure Games

Interactive fictions, or text-adventures, are games in which a player interacts with a world entirely through textual descriptions and text actions. Text-adventure games are typically structured as puzzles or quests wherein the player must execute certain actions in a certain order to succeed. In this paper, we consider the problem of procedurally generating a quest, defined as a series of actions required to progress towards a goal, in a text-adventure game. Quest generation in text environments is challenging because they must be semantically coherent. We present and evaluate two quest generation techniques: (1) a Markov model, and (2) a neural generative model. We specifically look at generating quests about cooking and train our models on recipe data. We evaluate our techniques with human participant studies looking at perceived creativity and coherence.

PDF Abstract CCNLG (ACL) 2019 PDF CCNLG (ACL) 2019 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here