Toward Dimensional Emotion Detection from Categorical Emotion Annotations

6 Nov 2019Sungjoon ParkJiseon KimJaeyeol JeonHeeyoung ParkAlice Oh

We propose a framework which makes a model predict fine-grained dimensional emotions (valence-arousal-dominance, VAD) trained on corpus annotated with coarse-grained categorical emotions. We train a model by minimizing EMD distances between predicted VAD score distribution and \textit{sorted} categorical emotion distributions in terms of VAD, as a proxy of target VAD score distributions... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet