Towards Infinite-Long Prefix in Transformer

20 Jun 2024  ·  YIngyu Liang, Zhenmei Shi, Zhao Song, Chiwun Yang ·

Prompting and context-based fine-tuning methods, which we call Prefix Learning, have been proposed to enhance the performance of language models on various downstream tasks. They are empirically efficient and effective, matching the performance of full parameter fine-tuning, but the theoretical understandings are limited. In this paper, we aim to address this limitation by studying their ability from the perspective of prefix length. In particular, we provide a convergence guarantee for training an ultra-long prefix in a stylized setting using the Neural Tangent Kernel (NTK) framework. Based on this strong theoretical guarantee, we design and implement an algorithm that only needs to introduce and fine-tune a few extra trainable parameters instead of an infinite-long prefix in each layer of a transformer, and can approximate the prefix attention to a guaranteed polynomial-small error. Preliminary experimental results on vision, natural language, and math data show that our method achieves superior or competitive performance compared to existing methods like full parameters fine-tuning, P-Tuning V2, and LoRA. This demonstrates our method is promising for parameter-efficient fine-tuning. Our code can be found at \url{https://github.com/ChristianYang37/chiwun/tree/main/src/NTK-Attention}.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here