Toward Qualitative Evaluation of Embeddings for Arabic Sentiment Analysis

In this paper, we propose several protocols to evaluate specific embeddings for Arabic sentiment analysis (SA) task. In fact, Arabic language is characterized by its agglutination and morphological richness contributing to great sparsity that could affect embedding quality. This work presents a study that compares embeddings based on words and lemmas in SA frame. We propose first to study the evolution of embedding models trained with different types of corpora (polar and non polar) and explore the variation between embeddings by observing the sentiment stability of neighbors in embedding spaces. Then, we evaluate embeddings with a neural architecture based on convolutional neural network (CNN). We make available our pre-trained embeddings to Arabic NLP research community with free to use. We provide also for free resources used to evaluate our embeddings. Experiments are done on the Large Arabic-Book Reviews (LABR) corpus in binary (positive/negative) classification frame. Our best result reaches 91.9{\%}, that is higher than the best previous published one (91.5{\%}).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here