Robust Adversarial Learning via Sparsifying Front Ends

24 Oct 2018  ·  Soorya Gopalakrishnan, Zhinus Marzi, Metehan Cekic, Upamanyu Madhow, Ramtin Pedarsani ·

It is by now well-known that small adversarial perturbations can induce classification errors in deep neural networks. In this paper, we take a bottom-up signal processing perspective to this problem and show that a systematic exploitation of sparsity in natural data is a promising tool for defense. For linear classifiers, we show that a sparsifying front end is provably effective against $\ell_{\infty}$-bounded attacks, reducing output distortion due to the attack by a factor of roughly $K/N$ where $N$ is the data dimension and $K$ is the sparsity level. We then extend this concept to deep networks, showing that a "locally linear" model can be used to develop a theoretical foundation for crafting attacks and defenses. We also devise attacks based on the locally linear model that outperform the well-known FGSM attack. We supplement our theoretical results with experiments on the MNIST and CIFAR-10 datasets, showing the efficacy of the proposed sparsity-based defense schemes.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here