Toward Understanding the Impact of Staleness in Distributed Machine Learning

ICLR 2019  ·  Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, Eric P. Xing ·

Many distributed machine learning (ML) systems adopt the non-synchronous execution in order to alleviate the network communication bottleneck, resulting in stale parameters that do not reflect the latest updates. Despite much development in large-scale ML, the effects of staleness on learning are inconclusive as it is challenging to directly monitor or control staleness in complex distributed environments. In this work, we study the convergence behaviors of a wide array of ML models and algorithms under delayed updates. Our extensive experiments reveal the rich diversity of the effects of staleness on the convergence of ML algorithms and offer insights into seemingly contradictory reports in the literature. The empirical findings also inspire a new convergence analysis of stochastic gradient descent in non-convex optimization under staleness, matching the best-known convergence rate of O(1/\sqrt{T}).

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here