Toward Understanding the Influence of Individual Clients in Federated Learning

20 Dec 2020  ·  Yihao Xue, Chaoyue Niu, Zhenzhe Zheng, Shaojie Tang, Chengfei Lv, Fan Wu, Guihai Chen ·

Federated learning allows mobile clients to jointly train a global model without sending their private data to a central server. Extensive works have studied the performance guarantee of the global model, however, it is still unclear how each individual client influences the collaborative training process. In this work, we defined a new notion, called {\em Fed-Influence}, to quantify this influence over the model parameters, and proposed an effective and efficient algorithm to estimate this metric. In particular, our design satisfies several desirable properties: (1) it requires neither retraining nor retracing, adding only linear computational overhead to clients and the server; (2) it strictly maintains the tenets of federated learning, without revealing any client's local private data; and (3) it works well on both convex and non-convex loss functions, and does not require the final model to be optimal. Empirical results on a synthetic dataset and the FEMNIST dataset demonstrate that our estimation method can approximate Fed-Influence with small bias. Further, we show an application of Fed-Influence in model debugging.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here