Towards a Better Understanding of the Computer Vision Research Community in Africa

Computer vision is a broad field of study that encompasses different tasks (e.g., object detection). Although computer vision is relevant to the African communities in various applications, yet computer vision research is under-explored in the continent and constructs only 0.06% of top-tier publications in the last ten years. In this paper, our goal is to have a better understanding of the computer vision research conducted in Africa and provide pointers on whether there is equity in research or not. We do this through an empirical analysis of the African computer vision publications that are Scopus indexed, where we collect around 63,000 publications over the period 2012-2022. We first study the opportunities available for African institutions to publish in top-tier computer vision venues. We show that African publishing trends in top-tier venues over the years do not exhibit consistent growth, unlike other continents such as North America or Asia. Moreover, we study all computer vision publications beyond top-tier venues in different African regions to find that mainly Northern and Southern Africa are publishing in computer vision with 68.5% and 15.9% of publications, resp. Nonetheless, we highlight that both Eastern and Western Africa are exhibiting a promising increase with the last two years closing the gap with Southern Africa. Additionally, we study the collaboration patterns in these publications to find that most of these exhibit international collaborations rather than African ones. We also show that most of these publications include an African author that is a key contributor as the first or last author. Finally, we present the most recurring keywords in computer vision publications per African region.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here