Towards a learning-theoretic analysis of spike-timing dependent plasticity

NeurIPS 2012  ·  David Balduzzi, Michel Besserve ·

This paper suggests a learning-theoretic perspective on how synaptic plasticity benefits global brain functioning. We introduce a model, the selectron, that (i) arises as the fast time constant limit of leaky integrate-and-fire neurons equipped with spiking timing dependent plasticity (STDP) and (ii) is amenable to theoretical analysis. We show that the selectron encodes reward estimates into spikes and that an error bound on spikes is controlled by a spiking margin and the sum of synaptic weights. Moreover, the efficacy of spikes (their usefulness to other reward maximizing selectrons) also depends on total synaptic strength. Finally, based on our analysis, we propose a regularized version of STDP, and show the regularization improves the robustness of neuronal learning when faced with multiple stimuli.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here