Towards a Low-SWaP 1024-beam Digital Array: A 32-beam Sub-system at 5.8 GHz

Millimeter wave communications require multibeam beamforming in order to utilize wireless channels that suffer from obstructions, path loss, and multi-path effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous RF beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the FFT complexity of $\mathcal{O}(N\: \log N)$ for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the $N=32$ case considered. The paper describes the proposed 32-point DFT approximation targeting a 1024-beams using a 2D array, and shows the multiplierless approximation and its mapping to a 32-beam sub-system consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx FPGA at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT as well as the proposed multiplier-free algorithm and are in good agreement.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here