Towards a theory of good SAT representations

18 Feb 2013Matthew GwynneOliver Kullmann

We aim at providing a foundation of a theory of "good" SAT representations F of boolean functions f. We argue that the hierarchy UC_k of unit-refutation complete clause-sets of level k, introduced by the authors, provides the most basic target classes, that is, F in UC_k is to be achieved for k as small as feasible. If F does not contain new variables, i.e., F is equivalent (as a CNF) to f, then F in UC_1 is similar to "achieving (generalised) arc consistency" known from the literature (it is somewhat weaker, but theoretically much nicer to handle)... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet