Towards Adversarial-Resilient Deep Neural Networks for False Data Injection Attack Detection in Power Grids

17 Feb 2021  ·  Jiangnan Li, Yingyuan Yang, Jinyuan Stella Sun, Kevin Tomsovic, Hairong Qi ·

False data injection attacks (FDIAs) pose a significant security threat to power system state estimation. To detect such attacks, recent studies have proposed machine learning (ML) techniques, particularly deep neural networks (DNNs). However, most of these methods fail to account for the risk posed by adversarial measurements, which can compromise the reliability of DNNs in various ML applications. In this paper, we present a DNN-based FDIA detection approach that is resilient to adversarial attacks. We first analyze several adversarial defense mechanisms used in computer vision and show their inherent limitations in FDIA detection. We then propose an adversarial-resilient DNN detection framework for FDIA that incorporates random input padding in both the training and inference phases. Our simulations, based on an IEEE standard power system, demonstrate that this framework significantly reduces the effectiveness of adversarial attacks while having a negligible impact on the DNNs' detection performance.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here