Towards automated kernel selection in machine learning systems: A SYCL case study

15 Mar 2020 John Lawson

Automated tuning of compute kernels is a popular area of research, mainly focused on finding optimal kernel parameters for a problem with fixed input sizes. This approach is good for deploying machine learning models, where the network topology is constant, but machine learning research often involves changing network topologies and hyperparameters... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet