Towards Automatically-Tuned Deep Neural Networks

Recent advances in AutoML have led to automated tools that can compete with machine learning experts on supervised learning tasks. However, current AutoML tools do not yet support modern neural networks effectively. In this work, we present a first version of Auto-Net, which provides automatically-tuned feed-forward neural networks without any human intervention. We report results on datasets from the recent AutoML challenge showing that ensembling Auto-Net with Auto-sklearn often performs better than either alone and report the first results on winning competition datasets against human experts with automatically-tuned neural networks.



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here