Towards Autonomous Reinforcement Learning: Automatic Setting of Hyper-parameters using Bayesian Optimization

12 May 2018  ·  Juan Cruz Barsce, Jorge A. Palombarini, Ernesto C. Martínez ·

With the increase of machine learning usage by industries and scientific communities in a variety of tasks such as text mining, image recognition and self-driving cars, automatic setting of hyper-parameter in learning algorithms is a key factor for achieving satisfactory performance regardless of user expertise in the inner workings of the techniques and methodologies. In particular, for a reinforcement learning algorithm, the efficiency of an agent learning a control policy in an uncertain environment is heavily dependent on the hyper-parameters used to balance exploration with exploitation. In this work, an autonomous learning framework that integrates Bayesian optimization with Gaussian process regression to optimize the hyper-parameters of a reinforcement learning algorithm, is proposed. Also, a bandits-based approach to achieve a balance between computational costs and decreasing uncertainty about the Q-values, is presented. A gridworld example is used to highlight how hyper-parameter configurations of a learning algorithm (SARSA) are iteratively improved based on two performance functions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods