Towards Better Analysis of Machine Learning Models: A Visual Analytics Perspective

4 Feb 2017  ·  Shixia Liu, Xiting Wang, Mengchen Liu, Jun Zhu ·

Interactive model analysis, the process of understanding, diagnosing, and refining a machine learning model with the help of interactive visualization, is very important for users to efficiently solve real-world artificial intelligence and data mining problems. Dramatic advances in big data analytics has led to a wide variety of interactive model analysis tasks. In this paper, we present a comprehensive analysis and interpretation of this rapidly developing area. Specifically, we classify the relevant work into three categories: understanding, diagnosis, and refinement. Each category is exemplified by recent influential work. Possible future research opportunities are also explored and discussed.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here