Towards Causal Physical Error Discovery in Video Analytics Systems

27 May 2024  ·  Jinjin Zhao, Ted Shaowang, Stavos Sintos, Sanjay Krishnan ·

Video analytics systems based on deep learning models are often opaque and brittle and require explanation systems to help users debug. Current model explanation system are very good at giving literal explanations of behavior in terms of pixel contributions but cannot integrate information about the physical or systems processes that might influence a prediction. This paper introduces the idea that a simple form of causal reasoning, called a regression discontinuity design, can be used to associate changes in multiple key performance indicators to physical real world phenomena to give users a more actionable set of video analytics explanations. We overview the system architecture and describe a vision of the impact that such a system might have.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods