Towards Classification of Legal Pharmaceutical Text using GAN-BERT

Pharmaceutical text classification is an important area of research for commercial and research institutions working in the pharmaceutical domain. Addressing this task is challenging due to the need of expert verified labelled data which can be expensive and time consuming to obtain. Towards this end, we leverage predictive coding methods for the task as they have been shown to generalise well for sentence classification. Specifically, we utilise GAN-BERT architecture to classify pharmaceutical texts. To capture the domain specificity, we propose to utilise the BioBERT model as our BERT model in the GAN-BERT framework. We conduct extensive evaluation to show the efficacy of our approach over baselines on multiple metrics.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here