Towards CNN Map Compression for camera relocalisation

2 Mar 2017  ·  Luis Contreras, Walterio Mayol-Cuevas ·

This paper presents a study on the use of Convolutional Neural Networks for camera relocalisation and its application to map compression. We follow state of the art visual relocalisation results and evaluate response to different data inputs -- namely, depth, grayscale, RGB, spatial position and combinations of these. We use a CNN map representation and introduce the notion of CNN map compression by using a smaller CNN architecture. We evaluate our proposal in a series of publicly available datasets. This formulation allows us to improve relocalisation accuracy by increasing the number of training trajectories while maintaining a constant-size CNN.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here