Towards deep learning with spiking neurons in energy based models with contrastive Hebbian plasticity

9 Dec 2016  ·  Thomas Mesnard, Wulfram Gerstner, Johanni Brea ·

In machine learning, error back-propagation in multi-layer neural networks (deep learning) has been impressively successful in supervised and reinforcement learning tasks. As a model for learning in the brain, however, deep learning has long been regarded as implausible, since it relies in its basic form on a non-local plasticity rule. To overcome this problem, energy-based models with local contrastive Hebbian learning were proposed and tested on a classification task with networks of rate neurons. We extended this work by implementing and testing such a model with networks of leaky integrate-and-fire neurons. Preliminary results indicate that it is possible to learn a non-linear regression task with hidden layers, spiking neurons and a local synaptic plasticity rule.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here