Towards Efficient Model-Heterogeneity Federated Learning for Large Models

25 Nov 2024  ·  Ruofan Jia, Weiying Xie, Jie Lei, Haonan Qin, Jitao Ma, Leyuan Fang ·

As demand grows for complex tasks and high-performance applications in edge computing, the deployment of large models in federated learning has become increasingly urgent, given their superior representational power and generalization capabilities. However, the resource constraints and heterogeneity among clients present significant challenges to this deployment. To tackle these challenges, we introduce HeteroTune, an innovative fine-tuning framework tailored for model-heterogeneity federated learning (MHFL). In particular, we propose a novel parameter-efficient fine-tuning (PEFT) structure, called FedAdapter, which employs a multi-branch cross-model aggregator to enable efficient knowledge aggregation across diverse models. Benefiting from the lightweight FedAdapter, our approach significantly reduces both the computational and communication overhead. Finally, our approach is simple yet effective, making it applicable to a wide range of large model fine-tuning tasks. Extensive experiments on computer vision (CV) and natural language processing (NLP) tasks demonstrate that our method achieves state-of-the-art results, seamlessly integrating efficiency and performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here