Towards Faithfulness in Open Domain Table-to-text Generation from an Entity-centric View

17 Feb 2021  ·  Tianyu Liu, Xin Zheng, Baobao Chang, Zhifang Sui ·

In open domain table-to-text generation, we notice that the unfaithful generation usually contains hallucinated content which can not be aligned to any input table record. We thus try to evaluate the generation faithfulness with two entity-centric metrics: table record coverage and the ratio of hallucinated entities in text, both of which are shown to have strong agreement with human judgements... Then based on these metrics, we quantitatively analyze the correlation between training data quality and generation fidelity which indicates the potential usage of entity information in faithful generation. Motivated by these findings, we propose two methods for faithful generation: 1) augmented training by incorporating the auxiliary entity information, including both an augmented plan-based model and an unsupervised model and 2) training instance selection based on faithfulness ranking. We show these approaches improve generation fidelity in both full dataset setting and few shot learning settings by both automatic and human evaluations. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here