Towards Human-Centred Explainability Benchmarks For Text Classification

10 Nov 2022  ·  Viktor Schlegel, Erick Mendez-Guzman, Riza Batista-Navarro ·

Progress on many Natural Language Processing (NLP) tasks, such as text classification, is driven by objective, reproducible and scalable evaluation via publicly available benchmarks. However, these are not always representative of real-world scenarios where text classifiers are employed, such as sentiment analysis or misinformation detection. In this position paper, we put forward two points that aim to alleviate this problem. First, we propose to extend text classification benchmarks to evaluate the explainability of text classifiers. We review challenges associated with objectively evaluating the capabilities to produce valid explanations which leads us to the second main point: We propose to ground these benchmarks in human-centred applications, for example by using social media, gamification or to learn explainability metrics from human judgements.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here