Interpreting Vulnerabilities of Multi-Instance Learning to Adversarial Perturbations

30 Nov 2022  ·  Yu-Xuan Zhang, Hua Meng, Xue-Mei Cao, Zhengchun Zhou, Mei Yang, Avik Ranjan Adhikary ·

Multi-Instance Learning (MIL) is a recent machine learning paradigm which is immensely useful in various real-life applications, like image analysis, video anomaly detection, text classification, etc. It is well known that most of the existing machine learning classifiers are highly vulnerable to adversarial perturbations. Since MIL is a weakly supervised learning, where information is available for a set of instances, called bag and not for every instances, adversarial perturbations can be fatal. In this paper, we have proposed two adversarial perturbation methods to analyze the effect of adversarial perturbations to interpret the vulnerability of MIL methods. Out of the two algorithms, one can be customized for every bag, and the other is a universal one, which can affect all bags in a given data set and thus has some generalizability. Through simulations, we have also shown the effectiveness of the proposed algorithms to fool the state-of-the-art (SOTA) MIL methods. Finally, we have discussed through experiments, about taking care of these kind of adversarial perturbations through a simple strategy. Source codes are available at https://github.com/InkiInki/MI-UAP.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here