Towards Joint Electricity and Data Trading: A Scalable Cooperative Game Theoretic Approach

8 Oct 2022  ·  Mingyu Yan, Fei Teng ·

This paper, for the first time, proposes a joint electricity and data trading mechanism based on cooperative game theory. All prosumers first submit the parameters associated with both electricity and data to the market operator. The operator utilizes the public and prosumers' private data to forecast the distributed renewable generators (DRGs) and quantify the improvement driven by prosumers' private data in terms of reduced uncertainty set. Then, the operator maximizes the grand coalition's total payoff considering the uncertain generation of DRGs and imputes the payoff to each prosumer based on their contribution to electricity and data sharing. The mathematical formulation of the grand coalition is developed and converted into a second order cone programming problem by using an affinepolicy based robust approach. The stability of such a grand coalition is mathematically proved, i.e., all prosumers are willing to cooperate. Furthermore, to address the scalability challenge of existing payoff imputation methods in the cooperative game, a two stage optimization based approach is proposed, which is converted into a mixed integer second order cone programming and solved by the Benders decomposition. Case studies illustrate all prosumers are motivated to trade electricity and data under the joint trading framework and the proposed imputation method significantly enhances the scalability.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here