Towards Machine-assisted Meta-Studies: The Hubble Constant

31 Jan 2019Tom CrosslandPontus StenetorpSebastian RiedelDaisuke KawataThomas D. KitchingRupert A. C. Croft

We present an approach for automatic extraction of measured values from the astrophysical literature, using the Hubble constant for our pilot study. Our rules-based model -- a classical technique in natural language processing -- has successfully extracted 298 measurements of the Hubble constant, with uncertainties, from the 208,541 available arXiv astrophysics papers... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet