Towards Mitigating Gender Bias in a decoder-based Neural Machine Translation model by Adding Contextual Information

WS 2020 Christine BastaMarta R. Costa-juss{\`a}Jos{\'e} A. R. Fonollosa

Gender bias negatively impacts many natural language processing applications, including machine translation (MT). The motivation behind this work is to study whether recent proposed MT techniques are significantly contributing to attenuate biases in document-level and gender-balanced data... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet