Towards Optimal Transport with Global Invariances

25 Jun 2018David Alvarez-MelisStefanie JegelkaTommi S. Jaakkola

Many problems in machine learning involve calculating correspondences between sets of objects, such as point clouds or images. Discrete optimal transport provides a natural and successful approach to such tasks whenever the two sets of objects can be represented in the same space, or at least distances between them can be directly evaluated... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.