Towards Real-time Text-driven Image Manipulation with Unconditional Diffusion Models

10 Apr 2023  ·  Nikita Starodubcev, Dmitry Baranchuk, Valentin Khrulkov, Artem Babenko ·

Recent advances in diffusion models enable many powerful instruments for image editing. One of these instruments is text-driven image manipulations: editing semantic attributes of an image according to the provided text description. % Popular text-conditional diffusion models offer various high-quality image manipulation methods for a broad range of text prompts. Existing diffusion-based methods already achieve high-quality image manipulations for a broad range of text prompts. However, in practice, these methods require high computation costs even with a high-end GPU. This greatly limits potential real-world applications of diffusion-based image editing, especially when running on user devices. In this paper, we address efficiency of the recent text-driven editing methods based on unconditional diffusion models and develop a novel algorithm that learns image manipulations 4.5-10 times faster and applies them 8 times faster. We carefully evaluate the visual quality and expressiveness of our approach on multiple datasets using human annotators. Our experiments demonstrate that our algorithm achieves the quality of much more expensive methods. Finally, we show that our approach can adapt the pretrained model to the user-specified image and text description on the fly just for 4 seconds. In this setting, we notice that more compact unconditional diffusion models can be considered as a rational alternative to the popular text-conditional counterparts.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods