Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems

22 Jul 2019  ·  Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, Joydeep Ghosh ·

Machine learning based decision making systems are increasingly affecting humans. An individual can suffer an undesirable outcome under such decision making systems (e.g. denied credit) irrespective of whether the decision is fair or accurate. Individual recourse pertains to the problem of providing an actionable set of changes a person can undertake in order to improve their outcome. We propose a recourse algorithm that models the underlying data distribution or manifold. We then provide a mechanism to generate the smallest set of changes that will improve an individual's outcome. This mechanism can be easily used to provide recourse for any differentiable machine learning based decision making system. Further, the resulting algorithm is shown to be applicable to both supervised classification and causal decision making systems. Our work attempts to fill gaps in existing fairness literature that have primarily focused on discovering and/or algorithmically enforcing fairness constraints on decision making systems. This work also provides an alternative approach to generating counterfactual explanations.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here