Towards Sustainable Workplace Mental Health: A Novel Approach to Early Intervention and Support

2 Feb 2024  ·  David W. Vinson, Mihael Arcan, David-Paul Niland, Fionn Delahunty ·

Employee well-being is a critical concern in the contemporary workplace, as highlighted by the American Psychological Association's 2021 report, indicating that 71% of employees experience stress or tension. This stress contributes significantly to workplace attrition and absenteeism, with 61% of attrition and 16% of sick days attributed to poor mental health. A major challenge for employers is that employees often remain unaware of their mental health issues until they reach a crisis point, resulting in limited utilization of corporate well-being benefits. This research addresses this challenge by presenting a groundbreaking stress detection algorithm that provides real-time support preemptively. Leveraging automated chatbot technology, the algorithm objectively measures mental health levels by analyzing chat conversations, offering personalized treatment suggestions in real-time based on linguistic biomarkers. The study explores the feasibility of integrating these innovations into practical learning applications within real-world contexts and introduces a chatbot-style system integrated into the broader employee experience platform. This platform, encompassing various features, aims to enhance overall employee well-being, detect stress in real time, and proactively engage with individuals to improve support effectiveness, demonstrating a 22% increase when assistance is provided early. Overall, the study emphasizes the importance of fostering a supportive workplace environment for employees' mental health.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here