Towards the Latent Transcriptome

ICLR 2019 Assya TrofimovFrancis DutilClaude PerreaultSebastien LemieuxYoshua BengioJoseph Paul Cohen

In this work we propose a method to compute continuous embeddings for kmers from raw RNA-seq data, without the need for alignment to a reference genome. The approach uses an RNN to transform kmers of the RNA-seq reads into a 2 dimensional representation that is used to predict abundance of each kmer... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet