Deconstructed Generation-Based Zero-Shot Model

24 Apr 2022  ·  Dubing Chen, Yuming Shen, Haofeng Zhang, Philip H. S. Torr ·

Recent research on Generalized Zero-Shot Learning (GZSL) has focused primarily on generation-based methods. However, current literature has overlooked the fundamental principles of these methods and has made limited progress in a complex manner. In this paper, we aim to deconstruct the generator-classifier framework and provide guidance for its improvement and extension. We begin by breaking down the generator-learned unseen class distribution into class-level and instance-level distributions. Through our analysis of the role of these two types of distributions in solving the GZSL problem, we generalize the focus of the generation-based approach, emphasizing the importance of (i) attribute generalization in generator learning and (ii) independent classifier learning with partially biased data. We present a simple method based on this analysis that outperforms SotAs on four public GZSL datasets, demonstrating the validity of our deconstruction. Furthermore, our proposed method remains effective even without a generative model, representing a step towards simplifying the generator-classifier structure. Our code is available at \url{https://github.com/cdb342/DGZ}.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here