Towards Theoretical Understanding of Large Batch Training in Stochastic Gradient Descent

3 Dec 2018  ·  Xiaowu Dai, Yuhua Zhu ·

Stochastic gradient descent (SGD) is almost ubiquitously used for training non-convex optimization tasks. Recently, a hypothesis proposed by Keskar et al. [2017] that large batch methods tend to converge to sharp minimizers has received increasing attention. We theoretically justify this hypothesis by providing new properties of SGD in both finite-time and asymptotic regimes. In particular, we give an explicit escaping time of SGD from a local minimum in the finite-time regime and prove that SGD tends to converge to flatter minima in the asymptotic regime (although may take exponential time to converge) regardless of the batch size. We also find that SGD with a larger ratio of learning rate to batch size tends to converge to a flat minimum faster, however, its generalization performance could be worse than the SGD with a smaller ratio of learning rate to batch size. We include numerical experiments to corroborate these theoretical findings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods