Towards Understanding Fast Adversarial Training

4 Jun 2020  ·  Bai Li, Shiqi Wang, Suman Jana, Lawrence Carin ·

Current neural-network-based classifiers are susceptible to adversarial examples. The most empirically successful approach to defending against such adversarial examples is adversarial training, which incorporates a strong self-attack during training to enhance its robustness. This approach, however, is computationally expensive and hence is hard to scale up. A recent work, called fast adversarial training, has shown that it is possible to markedly reduce computation time without sacrificing significant performance. This approach incorporates simple self-attacks, yet it can only run for a limited number of training epochs, resulting in sub-optimal performance. In this paper, we conduct experiments to understand the behavior of fast adversarial training and show the key to its success is the ability to recover from overfitting to weak attacks. We then extend our findings to improve fast adversarial training, demonstrating superior robust accuracy to strong adversarial training, with much-reduced training time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here