Towards Understanding the Universality of Transformers for Next-Token Prediction

3 Oct 2024  ·  Michael E. Sander, Gabriel Peyré ·

Causal Transformers are trained to predict the next token for a given context. While it is widely accepted that self-attention is crucial for encoding the causal structure of sequences, the precise underlying mechanism behind this in-context autoregressive learning ability remains unclear. In this paper, we take a step towards understanding this phenomenon by studying the approximation ability of Transformers for next-token prediction. Specifically, we explore the capacity of causal Transformers to predict the next token $x_{t+1}$ given an autoregressive sequence $(x_1, \dots, x_t)$ as a prompt, where $ x_{t+1} = f(x_t) $, and $ f $ is a context-dependent function that varies with each sequence. On the theoretical side, we focus on specific instances, namely when $ f $ is linear or when $ (x_t)_{t \geq 1} $ is periodic. We explicitly construct a Transformer (with linear, exponential, or softmax attention) that learns the mapping $f$ in-context through a causal kernel descent method. The causal kernel descent method we propose provably estimates $x_{t+1} $ based solely on past and current observations $ (x_1, \dots, x_t) $, with connections to the Kaczmarz algorithm in Hilbert spaces. We present experimental results that validate our theoretical findings and suggest their applicability to more general mappings $f$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods