Tracing the Propagation Path: A Flow Perspective of Representation Learning on Graphs

12 Dec 2019  ·  Menghan Wang, Kun Zhang, Gulin Li, Keping Yang, Luo Si ·

Graph Convolutional Networks (GCNs) have gained significant developments in representation learning on graphs. However, current GCNs suffer from two common challenges: 1) GCNs are only effective with shallow structures; stacking multiple GCN layers will lead to over-smoothing. 2) GCNs do not scale well with large, dense graphs due to the recursive neighborhood expansion. We generalize the propagation strategies of current GCNs as a \emph{"Sink$\to$Source"} mode, which seems to be an underlying cause of the two challenges. To address these issues intrinsically, in this paper, we study the information propagation mechanism in a \emph{"Source$\to$Sink"} mode. We introduce a new concept "information flow path" that explicitly defines where information originates and how it diffuses. Then a novel framework, namely Flow Graph Network (FlowGN), is proposed to learn node representations. FlowGN is computationally efficient and flexible in propagation strategies. Moreover, FlowGN decouples the layer structure from the information propagation process, removing the interior constraint of applying deep structures in traditional GCNs. Further experiments on public datasets demonstrate the superiority of FlowGN against state-of-the-art GCNs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods