Tracking Instances as Queries

22 Jun 2021  ·  Shusheng Yang, Yuxin Fang, Xinggang Wang, Yu Li, Ying Shan, Bin Feng, Wenyu Liu ·

Recently, query based deep networks catch lots of attention owing to their end-to-end pipeline and competitive results on several fundamental computer vision tasks, such as object detection, semantic segmentation, and instance segmentation. However, how to establish a query based video instance segmentation (VIS) framework with elegant architecture and strong performance remains to be settled... In this paper, we present \textbf{QueryTrack} (i.e., tracking instances as queries), a unified query based VIS framework fully leveraging the intrinsic one-to-one correspondence between instances and queries in QueryInst. The proposed method obtains 52.7 / 52.3 AP on YouTube-VIS-2019 / 2021 datasets, which wins the 2-nd place in the YouTube-VIS Challenge at CVPR 2021 \textbf{with a single online end-to-end model, single scale testing \& modest amount of training data}. We also provide QueryTrack-ResNet-50 baseline results on YouTube-VIS-2021 val set as references for the VIS community. read more

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here