Traffic Signs in the Wild: Highlights from the IEEE Video and Image Processing Cup 2017 Student Competition [SP Competitions]

15 Oct 2018  ·  Dogancan Temel, Ghassan AlRegib ·

Robust and reliable traffic sign detection is necessary to bring autonomous vehicles onto our roads. State-of-the-art algorithms successfully perform traffic sign detection over existing databases that mostly lack severe challenging conditions. VIP Cup 2017 competition focused on detecting such traffic signs under challenging conditions. To facilitate such task and competition, we introduced a video dataset denoted as CURE-TSD that includes a variety of challenging conditions. The goal of this challenge was to implement traffic sign detection algorithms that can robustly perform under such challenging conditions. In this article, we share an overview of the VIP Cup 2017 experience including competition setup, teams, technical approaches, participation statistics, and competition experience through finalist teams members' and organizers' eyes.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here