Training Auto-encoders Effectively via Eliminating Task-irrelevant Input Variables

31 May 2016  ·  Hui Shen, Dehua Li, Hong Wu, Zhaoxiang Zang ·

Auto-encoders are often used as building blocks of deep network classifier to learn feature extractors, but task-irrelevant information in the input data may lead to bad extractors and result in poor generalization performance of the network. In this paper,via dropping the task-irrelevant input variables the performance of auto-encoders can be obviously improved .Specifically, an importance-based variable selection method is proposed to aim at finding the task-irrelevant input variables and dropping them.It firstly estimates importance of each variable,and then drops the variables with importance value lower than a threshold. In order to obtain better performance, the method can be employed for each layer of stacked auto-encoders. Experimental results show that when combined with our method the stacked denoising auto-encoders achieves significantly improved performance on three challenging datasets.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here