Training Conditional Random Fields with Natural Gradient Descent

10 Aug 2015  ·  Yuan Cao ·

We propose a novel parameter estimation procedure that works efficiently for conditional random fields (CRF). This algorithm is an extension to the maximum likelihood estimation (MLE), using loss functions defined by Bregman divergences which measure the proximity between the model expectation and the empirical mean of the feature vectors. This leads to a flexible training framework from which multiple update strategies can be derived using natural gradient descent (NGD). We carefully choose the convex function inducing the Bregman divergence so that the types of updates are reduced, while making the optimization procedure more effective by transforming the gradients of the log-likelihood loss function. The derived algorithms are very simple and can be easily implemented on top of the existing stochastic gradient descent (SGD) optimization procedure, yet it is very effective as illustrated by experimental results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here